CSE 599d Lecture Notes 16,17,18, and 19

The latest additions will probably have lots of errors (well even more than my normal notes!) as I haven’t taught from these notes yet and I always find errors when I teach. (Plus they are on error correction!) But this completes this set of notes for this quarter. I’ll probably give these notes a good reading over sometime in the next month to correct all of the silly (and substantial) errors in the notes. I think I covered just about what I thought I would cover. We won’t get to quantum cryptography, but really to do this I’d need to spend some lectures on purification protocols and discuss some basic information theory to get at the Preskill-Shor proof of security. Unfortunately if I’m going to do this I probably would have to do it over a two quarter quantum computing course (for such a course I would add results on quantum communication complexity, and a lot of the basics of quantum information theory…certainly there is not a lack of subject to spend two quarters on!)
Actually the next class I really want to teach is a class on the representation theory of finite and Lie groups and quantum information science. Maybe next year (next quarter I teach “Introduction to Digital Design” No, not quantum digital design ;))
Lecture Notes
Lecture Notes 1: Introduction and Basics of Quantum Theory
Lecture Notes 2: Dirac Notation and Basic Linear Algebra for Quantum Computing
Lecture Notes 3: One Qubit, Two Qubit
Lecture Notes 4: The No-Cloning Theorem, Classical Teleportation and Quantum Teleportation, Superdense Coding
Lecture Notes 5: The Quantum Circuit Model and Universal Quantum Computation
Lecture Notes 6: Reversible Classical Circuits and the Deutsch-Jozsa Algorithm
Lecture Notes 7: The Recursive and Nonrecursive Bernstein-Vazirani Algorithm
Lecture Notes 8: Simon’s Algorithm
Lecture Notes 9: The Quantum Fourier Transform and Jordan’s Algorithm
Lecture Notes 10: Quantum Phase Estimation and Arbitrary Size Quantum Fourier Transforms
Lecture Notes 11: Shor’s Algorithm
Lecture Notes 12: Grover’s Algorithm
Lecture Notes 13: Mixed States and Open Quantum Systems
Lecture Notes 14: Quantum Entanglement and Bell’s Theorem
Lecture Notes 15: When Quantum Computers Fall Apart
Lecture Notes 16: Introduction to Quantum Error Correction
Lecture Notes 17: The Quantum Error Correcting Criteria
Lecture Notes 18: Stabilizer Quantum Error Correcting Codes
Lecture Notes 19: Fault-Tolerant Quantum Computation and the Threshold Theorem
Homework
Homework 1
Homework 2
Homework 3
Handouts
Syllabus

One Reply to “CSE 599d Lecture Notes 16,17,18, and 19”

Leave a Reply

Your email address will not be published. Required fields are marked *