Goodbye Professor Tombrello

This morning I awoke to the horrible news that Caltech Physics Professor Tom Tombrello had passed away. Professor Tombrello was my undergraduate advisor, my research advisor, a mentor, and, most importantly a friend. His impact on me, from my career to the way I try to live my life, was profound.
Because life is surreal, just a few days ago I wrote this post that describes the event that led Professor Tombrello and I down entwined paths, my enrollment in his class Physics 11. Physics 11 was a class about how to create value in the world, disguised as a class about how to do “physics” research as an undergraduate. Indeed, in my own life, Professor Tombrello’s roll was to make me think really really hard about what it meant to create. Sometimes this creation was in research, trying to figure out a new approach or even a new problem. Sometimes this creation was in a new career, moving to Google to be given the opportunity to build high impact creations. I might even say that this creation extends into the far reaches of Washington state, where we helped bring about the creation of a house most unusual.
There are many stories I remember about Professor Tombrello. From the slightly amusing like the time after the Northridge earthquake when an aftershock shook our class while he was practicing his own special brand of teach, and we all just sort of sat still until we heard this assistant, Michelle, shout out “That’s it! I’m outta here!” and go storming out. To the time I talked with him following the loss of one of his family members, and could see the profound sadness even in a man who push optimistically forward at full speed.
Some portraits:

After one visit to Professor Tombrello, I actually recorded my thoughts on our conversation:

This blog post is for me, not for you. Brought to you by a trip down memory lane visiting my adviser at Caltech.
Do something new. Do something exciting. Excel. Whether the path follows your momentum is not relevant.
Don’t dwell. Don’t get stuck. Don’t put blinders on.
Consider how the problem will be solved, not how you are going to solve it.
Remember Feynman: solve problems.
Nothing is not interesting, but some things are boring.
Dyson’s driving lesson: forced intense conversation to learn what the other has to say.
Avoid confirmatory sources of news, except as a reminder of the base. Keep your ear close to the brains: their hushed obsessions are the next big news.
Learn something new everyday but also remember to forget the things not worth knowing.
Technically they can do it or they can’t, but you can sure help them do it better when they can.
Create. Create. Create.
Write a book, listen to Sandra Tsing Loh, investigate Willow Garage, and watch Jeff Bezos to understand how to be a merchant.
Create. Create. Create.

So tonight, I’ll have a glass of red wine to remember my professor, think of his family, and the students to whom he meant so much. And tomorrow I’ll pick myself up, and try to figure out just what I can create next.

I have a friend in Minsk…

Unlike the usual university plagiarism policy which is typically something bland copied from another university, the University of Bergen has explained the problem, and consequences, of plagiarism with Hollywood-level production values.

(Be sure to click on “CC” for the English subtitles.)
I came across the video from the blog of Andrew Gelman, who has long chronicled plagiarism and other forms of scientific misconduct. From his post, I also learned about my new favorite plagiarism story.

Why the laity hope Einstein was wrong.

Although reputable news sources pointed out that most scientists think some more mundane explanation will be found for the too-early arrival of CERN-generated neutrinos in Gran Sasso, recently confirmed by a second round of experiments with much briefer pulse durations to exclude the most likely sources of systematic error, the take-home message for most non-scientists seems to have been “Einstein was wrong.  Things can go faster than light.”  Scientists trying to explain their skepticism often end up sounding closed-minded and arrogant.  People say, “Why don’t you take evidence of faster-than-light travel at face value, rather than saying it must be wrong because it disagrees with Einstein.”  The macho desire not to be bound by an arbitrary speed limit doubtless also helps explain why warp drives are such a staple of  science fiction.  At a recent dinner party, as my wife silently reminded me that a lecture on time dilation and Fitzgerald contraction would be inappropriate, the best I could come up with was an analogy to another branch of physics where where lay peoples’ intuition accords better with that of specialists:  I told them, without giving them any reason to believe me, that Einstein showed that faster-than-light travel would be about as far-reaching and disruptive in its consequences as an engine that required no fuel.
That was too crude an analogy. Certainly a fuelless engine, if it could be built, would be more disruptive in its practical consequences, whereas faster-than-light neutrinos could be accommodated, without creating any paradoxes of time travel, if there were a preferred reference frame within which neutrinos traveling through rock could go faster than light, while other particles, including neutrinos traveling though empty space, would behave in the usual Lorentz-invariant fashion supported by innumerable experiments and astronomical observations.
But it is wrong to blame mere populist distrust of authority for this disconnect between lay and expert opinion. Rather the fault lies with a failure of science education, leaving the public with a good intuition for Galilean relativity, but little understanding of how it has been superseded by special relativity.  So maybe, after dinner is over and my audience is no longer captive, I should retell the old story of cosmic ray-generated muons, who see the onrushing earth as having an atmosphere only a few feet thick, while terrestrial observers see the muons’ lifetime as having been extended manyfold by time dilation.
It is this difference in appreciation of special relativity that accounts for the fact that for most  people, faster-than-light travel seems far more plausible than time travel, whereas for experts, time travel, via closed timelike curves of general relativistic origin, is more plausible than faster-than-light travel in flat spacetime.

Will the Real Reason For Quantum Theory Please Stand Up?

Michael Nielsen has a nice essay up explaining Why the world needs quantum mechanics:

Conventional wisdom holds that quantum mechanics is hard to learn. This is more or less correct, although often overstated. However, the necessity of abandoning conventional ways of thinking about the world, and finding a radically new way – quantum mechanics – can be understood by any intelligent person willing to spend some time concentrating hard. Conveying that understanding is the purpose of this essay.

For a good explanation of Bell inequalities, jump to Michael’s essay.
Continue reading “Will the Real Reason For Quantum Theory Please Stand Up?”

School's Out For Summer…Almost

Today is the final exam for the course I’ve been teaching this summer. So I need some reading material for when I’m not watching the students take their exam. Here are two fun ones I just downloaded (one via Alea):

The Reverse of The Law of Large Numbers
Authors: Kieran Kelly, Przemyslaw Repetowicz, Seosamh macReamoinn
Abstract:The Law of Large Numbers tells us that as the sample size (N) is increased, the sample mean converges on the population mean, provided that the latter exists. In this paper, we investigate the opposite effect: keeping the sample size fixed while increasing the number of outcomes (M) available to a discrete random variable. We establish sufficient conditions for the variance of the sample mean to increase monotonically with the number of outcomes, such that the sample mean “diverges” from the population mean, acting like an “reverse” to the law of large numbers. These results, we believe, are relevant to many situations which require sampling of statistics of certain finite discrete random variables.


Complex and Unpredictable Cardano
Aurthor: Artur Ekert
Abstract: This purely recreational paper is about one of the most colorful characters of the Italian Renaissance, Girolamo Cardano, and the discovery of two basic ingredients of quantum theory, probability and complex numbers. The paper is dedicated to Giuseppe Castagnoli on the occasion of his 65th birthday. Back in the early 1990s, Giuseppe instigated a series of meetings at Villa Gualino, in Torino, which brought together few scattered individuals interested in the physics of computation. By doing so he effectively created and consolidated a vibrant and friendly community of researchers devoted to quantum information science. Many thanks for that!

Teacher of the Year

For a second straight year, the winner of the U.S. Teacher of the Year, is a University of Washington graduate. Of course I’m not supposed to say that, as not bragging is an sacred northwest tradition. (Did you know that the University of Washington receives the second most federal research funding of any institute in the United States?)
Continue reading “Teacher of the Year”

CSE 322 Week 2: Nondeterminism Rocks

Last week, in the class I’m teaching, we talked about the basics of deterministic finite automata. In week two we moved on to more interesting and slightly less basic material. In particular we introduced the notion of a nondeterministic finite automata and, by the end of the week, had showed that the class of languages accepted by deterministic finite automata is exactly the same class of languages accepted by nondeterministic finite automata.
Continue reading “CSE 322 Week 2: Nondeterminism Rocks”