## 22 Replies to “Round We Go”

1. If I guess correctly, will you send me an updated list of GQI committee members for the newsletter? ðŸ™‚

2. RyanR says:

The video you have requested is not available.

3. Are you working on an App where you can traverse/explore 3D graphs using “few finger gestures” ?

4. Justin Dove says:

It looks like some sort of depiction of a group or algebraic structure. I guess that’s the obvious part (or not, who knows). I can’t see all the connections. At first glance it looks like it is a set of subsets closed under unions and symmetric differences. Not sure about the red stuff though.

5. John the Fisherman says:

Distance-2 toric code where blue is data, red is ancilla, and your notation is confusing.

6. John you are stereotyping me ðŸ™‚ Nope not related to the toric code.
I’m surprised no one has spotted the pattern in the graph. I’m not as surprised that no one knows what it is…the only people I know who might know that answer are CS theorists.

7. @David: it’s just rotating yes. The question is “what is this graph?”

8. Yes for giggles and to show the edges! Not part of a conformal graph thing.

9. David says:

I don’t get it. To my eye, nothing is happening.

10. David says:

Ohh, not dynamical. Rotating is just for giggles, or to show us all the edges. This is part of the conformal graphs thing?

11. David says:

The edges from the (a,b) boxes are hard to see [white background and thicker lines might be better for display?]
I’m trying to discern why you are interested in combinations of two things chosen from four? Is the four item node in the graph adjacent to any of the (a,b) boxes?

12. Justin Dove says:

Well how about a full description of the adjacencies? After all, if the video was high enough quality and we had good enough eyes, that data would be available to us.

13. [0,1,2,3] – a1,a2,a3,a0
[0,1] – a0,b2,a1,b3
[0,2] – b1,a2,b3,a0
[0,3] – b2,b1,a0,a3
[1,2] – b0,a1,b3,a2
[1,3] – a1,b0,b2,a3
[2,3] – a2,a3,b0,b1
[] – b1,b3,b2,b0

14. It’s a “famous” construction. Well famous among the small group of people who have caught graph isomorphism disease…

15. Hongkong Phooey says:

Uhmm, if there’s a number x in [], then there’s a connection to ax, if not, it’s connected to bx, e.g. empty [] is connected to all b’s, [0,1,2,3] is connected to all a’s. I guess that’s not enough to be of interest to a CS theorist (?)

16. aram says:

I guess it’s related to the Hadamard code?

17. Peter Love says:

Hi Dave,
Nice! Never mind what it is, how did you make it? Is this vpython?
Peter