It’s the paper dance, done automagically (one of the authors is a Dancing Machine, the other, not so much):
arXiv:1009.2203 [scirate arxiv]
Automated searching for quantum subsystem codes by Gregory M. Crosswhite, Dave Bacon
Quantum error correction allows for faulty quantum systems to behave in an effectively error free manner. One important class of techniques for quantum error correction is the class of quantum subsystem codes, which are relevant both to active quantum error correcting schemes as well as to the design of self-correcting quantum memories. Previous approaches for investigating these codes have focused on applying theoretical analysis to look for interesting codes and to investigate their properties. In this paper we present an alternative approach that uses computational analysis to accomplish the same goals. Specifically, we present an algorithm that computes the optimal quantum subsystem code that can be implemented given an arbitrary set of measurement operators that are tensor products of Pauli operators. We then demonstrate the utility of this algorithm by performing a systematic investigation of the quantum subsystem codes that exist in the setting where the interactions are limited to 2-body interactions between neighbors on lattices derived from the convex uniform tilings of the plane.
With pictures:
and with code to boot: http://github.com/gcross/CodeQuest/downloads.