Chairs

Two notes on chairs. Michael Green is the new Lucasian chair of Mathematics replacing the esteemed Stephen Hawking. Green helped sparked the great optimism in string theory by discovering with John Schwarz the Green-Schwarz anomaly cancellation mechanism.
Elsewhere, the Perimeter Institute has named ten new distinguished research chairs, among them a host of the quantum computing afflicted:

Dorit Aharonov is a Professor in the Department of Computer Science and Engineering at Hebrew University in Jerusalem. She has made major contributions to the theoretical foundations of quantum computation, in particular in the context of understanding and counteracting the effects of ‘noisy’ environments on delicate quantum systems performing computations, the identification of a quantum to classical phase transition in fault tolerant quantum computers, the development of new tools and approaches for the design of quantum algorithms, and the study of ground states of many body quantum Hamiltonians for various classes of Hamiltonians, from a computational complexity point of view. In 2006 she was awarded the Krill prize for excellence in scientific research. Dr. Aharonov is on the faculty of Perimeter Scholars International.
Patrick Hayden holds the Canada Research Chair in the Physics of Information at McGill University. His research focuses on finding efficient methods for performing the communication tasks that will be required for large-scale quantum information processing. This includes the development of methods for reliably sending quantum states through ‘noisy’ media and for protecting quantum information from unauthorized manipulation. He has also applied these techniques to the question of information loss from black holes. Among Dr. Hayden’s honors, he is a past Alfred P. Sloan Foundation Fellow and Rhodes Scholar.
Christopher Isham is a Senior Research Investigator and Emeritus Professor of Theoretical Physics at Imperial College London. He is a former Senior Dean of the College. Dr Isham has made many important contributions in the fields of quantum gravity and the foundations of quantum mechanics. Motivated by the ‘problem of time’ in quantum gravity, he developed a new approach to quantum theory known as the ‘HPO formalism’ that enables the theory to be extended to situations where there is no normal notion of time (such as in Einstein’s theory of general relativity). Since the late 1990s, Dr. Isham has been developing a completely new approach to formulating theories of physics based on the mathematical concept of a ‘topos’. This gives a radically new way of understanding the traditional problems of quantum theory as well as providing a framework in which to develop new theories that would not have been conceived using standard mathematics. From 2001-2005, Dr. Isham was a member of Perimeter Institute’s Scientific Advisory Committee; during the last year he was the Chair of the Committee.
Leo Kadanoff is a theoretical physicist and applied mathematician based at the James Franck Institute at the University of Chicago. He is considered a pioneer of complexity theory, and has made important contributions to research in the properties of matter, the development of urban areas, statistical models of physical systems, and the development of chaos in simple mechanical and fluid systems. His is best known for the development of the concepts of “scale invariance” and “universality” as they are applied to phase transitions. More recently, he has been involved in the understanding of singularities in fluid flow. Among Dr. Kadanoff’s many honours, he is a past recipient of the National Medal of Science (US), the Grande Medaille d’Or of the Acad√©mie des Sciences de l’Institut de France, the Wolf Foundation Prize, the Boltzmann Medal of the International Union of Pure and Applied Physics, and the Centennial Medal of Harvard University. He is also a past President of the American Physical Society. Dr. Kadanoff is on the faculty of Perimeter Scholars International.
Renate Loll is a Professor of Theoretical Physics and a member of the Institute for Theoretical Physics in the Faculty of Physics and Astronomy at Utrecht University. Her research centers on quantum gravity, the search for a consistent theory that describes the microscopic constituents of spacetime geometry and the quantum-dynamical laws governing their interaction. She has made major contributions to loop quantum gravity, and with her collaborators, has proposed a novel theory of Quantum Gravity via ‘Causal Dynamical Triangulations.’ Dr. Loll heads one of the largest research groups on nonperturbative quantum gravity worldwide, and is the recipient of a prestigious personal VICI-grant of the Netherlands Organization for Scientific Research. She is also a faculty member of Perimeter Scholars International.
Malcolm Perry is a Professor of Theoretical Physics in the Department of Applied Mathematics and Theoretical Physics at the University of Cambridge and a Fellow of Trinity College, Cambridge. His research centers upon general relativity, supergravity and string theory. Dr. Perry has made major contributions to string theory, Euclidean quantum gravity, and our understanding of black hole radiation. With Perimeter Institute Faculty member Robert Myers, he developed the Myers-Perry metric, which shows how to construct black holes in the higher spacetime dimensions associated with string theory. Dr. Perry’s honours include an Sc. D. from the University of Cambridge. Dr. Perry is also on the faculty of Perimeter Scholars International.
Sandu Popescu is a Professor of Physics at the H. H. Wills Physics Laboratory at the University of Bristol, and a member of the Bristol Quantum Information and Computation Group. He has made numerous contributions to quantum theory, ranging from the very fundamental, to the design of practical experiments (such as the first teleportation experiment), to patentable commercial applications. His investigations into the nature of quantum behavior, with particular focus on quantum non-locality, led him to discover some of the central concepts in the emerging area of quantum information and computation. He is a past recipient of the Adams Prize (Cambridge), and the Clifford Patterson Prize of the Royal Society (UK).
William Unruh is a Professor of Physics at the University of British Columbia who has made seminal contributions to our understanding of gravity, black holes, cosmology, quantum fields in curved spaces, and the foundations of quantum mechanics, including the discovery of the Unruh effect. His investigations into the effects of quantum mechanics of the earliest stages of the universe have yielded many insights, including the effects of quantum mechanics on computation. Dr. Unruh was the first Director of the Cosmology and Gravity Program at the Canadian Institute for Advanced Research (1985-1996). His many awards include the Rutherford Medal of the Royal Society of Canada (1982), the Herzberg Medal of the Canadian Association of Physicists (1983), the Steacie Prize from the National Research Council (1984), the Canadian Association of Physicists Medal of Achievement (1995), and the Canada Council Killam Prize. He is an elected Fellow of the Royal Society of Canada, a Fellow of the American Physical Society, and a Fellow of the Royal Society of London, and a Foreign Honorary Member of the American Academy of Arts and Science.
Guifre Vidal is a Professor in the School of Physical Sciences at the University of Queensland, who has made important contributions to the development of quantum information science, with applications to condensed matter theory. His research explores the phenomenon of entanglement, the renormalization group, and the development of tensor network algorithms to simulate quantum systems. Dr. Vidal’s past honors include a Marie Curie Fellowship, awarded by the European Union, and a Sherman Fairchild Foundation Fellowship. He is a Federation Fellow of the Australian Research Council.
Mark Wise is the John A. McCone Professor of High Energy Physics at the California Institute of Technology. He has conducted research in elementary particle physics and cosmology, and shared the 2001 Sakurai Prize for Theoretical Particle Physics for the development of the ‘Heavy Quark Effective Theory’ (HQET), a mathematical formalism that enables physicists to make predictions about otherwise intractable problems in the theory of the strong interactions of quarks. He has also published work on mathematical models for finance and risk assessment. Dr. Wise is a past Sloan Foundation fellow, a fellow of the American Physical Society, and a member of the American Academy of Arts and Sciences and of the National Academy of Sciences.

Grape Crush Time

The grapes have been picked upand the fermenting has (hopefully!) begun. This year I’m trying two types of grapes, Cabernet Sauvignon and Sangiovese.

Machine Learning Ruins Blackjack

Blackjack, or 21, is a game that many enjoy wasting their money playing at casinos. For those who don’t like to waste their money, or at least want to waste it more slowly than others, card counting is a time honored tradition for moving the odds away from the casino and in the players direction (blessed be Ed Thorp.) In other words it makes the game at least slightly enjoyable for those who like to win. But now a graduate of the University of Dundee, Kris Zutis, is going to ruin this small smidgen of fun:

A University of Dundee graduate has created a computer system with the potential to make the game of Blackjack fairer by detecting card counters and dealer errors.

Okay so catching dealer errors certainly makes the game “more fair.” But detecting card counters? People who are eking out a minor advantage (and have to be aware of methods to avoid detection because casinos can kick them out not because of card counting per se, but because the casinos run the game) by using their damn brains are not acting fair? To be fair, of course casinos are already doing this so we should be nice to the grad student 🙂
And further, of course all is fair in love, war, and casino games. But this makes me wonder about arbitrage in the era of machine learning, each machine vying to outdo the other in keeping their profits locked up tight. My high margin classifier just gave me 21, yipee! Oh wait, this is already happening on Wall Street. Remind me again about the market making and liquidy arguments for blackjack.

No Trail Email

From the annals of high idiocy, I enjoyed this sequence of emails at BofA:

“Unfortunately it’s screw the shareholders!!” Charles K. Gifford wrote to a fellow director in an e-mail exchange that took place during the call.
“No trail,” Thomas May, that director, reminded him, an apparent reference to the inadvisability of leaving an e-mail thread of their conversation.

Shortly after Mr. May’s remark about an e-mail trail, Mr. Gifford said his comments were made in “the context of a horrible economy!!! Will effect everyone.”
“Good comeback,” Mr. May replied.

You have to give Mr. Gifford at least credit for not replying back “OMG Oops!!!” after the first email exchange.

LHC Not Mayan

You all scoff at me for subscribing to the RSS feed http://www.hasthelhcdestroyedtheearth.com/rss.xml but on Oct. 12 it told me

NO AND NOR WILL IT IN 2012

Aha! What will this do to the sales of 2012 end of world books? (Crap, yeah you’re right it will probably make them go up.)

Apps to Randomize Your World (Some Using Quantum Physics!)

Update 10/13/09: corrected for ice cream flavor and location, thus merging two related universes.
There is a story about Richard Feynman that while he was at Princeton MIT he had a hard time with dessert. Apparently they always served either chocolate or vanilla ice cream and Feynman would agonize over which he wanted that night. Then one day he decided that he was wasting his time making this decision and so he would solve this by only choosing vanilla chocolate and from that point on in life that is what he did. He no longer wasted time choosing, and, apparently, ate a lot of vanilla chocolate ice cream. Of course there is an equally valid and equally elegant solution to this problem which is in fact the exact opposite of Feynman’s deterministic solution: choose randomly! Chocolate or vanilla? Choose randomly. Stop at the stop sign or not? Choose randomly (okay maybe not!) Of course there is the question of exactly how you choose randomly. For some, dice may suffice, but isn’t there a better way than carrying around a bag of dice which makes you look like your heading out for a night of RPGing?
Well today I’m happy to report to you that there is a solution to this problem: use your iPhone! As many of you know, when I’m stuck on a plane I like to write iPhone apps (thus leading to my app for accesing the arXiv: arXiview.) So on a few of these flights recently I kludged together a new iPhone app: MakeRandom. This app gives you access to custom random lists, dice, random numbers, and random words. To get the randomness you just set up the list you want to randomly select from and shake! Exciting, no? But today I got an email about an even more exciting use of randomness in the iPhone: Universe Splitter¬©:

Scientists say that every quantum event plays out simultaneously in every possible way, with each possibility becoming real in a separate universe. You can now harness this powerful and mysterious effect right from your iPhone or iPod Touch!
How? Whenever you’re faced with a choice — for example, whether to accept a job offer or to turn it down — just type both of these actions into Universe Splitter¬©, and press the button.
Universe Splitter¬© will immediately contact a laboratory in Geneva, Switzerland, and connect to a Quantis brand quantum device, which releases single photons into a partially-silvered mirror. Each photon will simultaneously bounce off the mirror and pass through it — but in separate universes.
Within seconds, Universe Splitter¬© will receive the experiment’s result and tell you which of the two universes you’re in, and therefore which action to take. Think of it — two entire universes, complete with every last planet and galaxy, and in one, a version of you who took the new job, and in the other, a version of you who didn’t!

Classic! Watch as this quantum physicist who wrote an app for randomness slaps himself on the forehead for not thinking of this. Check out Universe Splitter’s website for a great quote by Garrett Lisi.
Universe Splitter© is available from the iTunes store for $1.99 here
MakeRandom is also available from the iTunes store for $0.99here.
Below the fold: screenshots and a philosophical discussion of the difference between the applications.
Continue reading “Apps to Randomize Your World (Some Using Quantum Physics!)”