And the Earth Shook

From Nature:

The devastating earthquake that struck the Indian Ocean on 26 December was so powerful that it has accelerated the Earth’s rotation, geophysicists have declared. They estimate that the shockwave shortened the period of our planet’s rotation by some three microseconds.
The change was caused by a shift of mass towards the planet’s centre, as the Indian Ocean’s heavy tectonic plate lurched underneath Indonesia’s one, say researchers at NASA’s Jet Propulsion Laboratory in Pasadena, California. This caused the globe to rotate faster, in the same way that a spinning figure-skater accelerates by tucking in her arms.

I don’t know which is more impressive, that the earthquake could cause enough mass to move to change the period of rotation, or that we can actually measure this change?

Profile of a Quantum Theorist

Nature (433, 8 (2005)) has an article profiling four young theorists, and among these theorists is quantum computing’s Dorit Aharonov:

A theorist of errors
Growing up on Einstein Street in Haifa, Israel, Dorit Aharonov was perhaps destined to study physics. But she pursued other interests before finally settling on quantum computation. Haim Watzman reports.
To enter Dorit Aharonov’s office is to experience a sudden transition between order and disorder. The corridors of the computer-science building at the Hebrew University of Jerusalem are stark, white and neat. Aharonov’s office is a jumble of red-and-orange patterned cushions, article reprints and wicker furniture. It’s an appropriate setting for a theorist who has proved that when disorder reaches a certain level, the physics of the quantum realm switches into the classical domain of the world we see every day.
Aharonov devotes herself to the theory behind quantum computers. As-yet unbuilt, these machines would harness the power of quantum mechanics to perform tasks that defeat conventional computers — such as factoring large numbers. Aharonov, now 34, has already made important contributions to this goal by showing that a quantum computer could perform reliably and accurately despite a ‘noisy’ environment.
Physics runs strong in Aharonov’s family. Her uncle, Yakir Aharonov, is a physicist at Tel Aviv University, and her father is a mathematician who taught her the beauty of numbers when she was little. She later chose physics and mathematics for her undergraduate studies, but the quantum world did not initially capture her imagination. She wanted instead to use physics to study the brain.
A chance encounter
“I wanted to solve the problem of consciousness,” she recalls. But she began to think that the problem was still beyond the reach of today’s science. “Then, one day, at a wedding, a friend asked me for advice about what direction to take in the study of the brain. I advised him to check out what people in computer science were doing,” she says.
Realizing she should take her own advice, Aharonov went to the Hebrew University’s computer-science building to find someone to talk to. She was directed to Michael Ben-Or and, as she knocked on his door, she says that she had a strong feeling something important was going to happen. It did. Ben-Or told her about quantum computation. “It fascinated me. It was mathematics, physics and philosophy all in one package,” she says.
Back then, in 1994, the problem facing theorists such as Ben-Or was how to prevent a quantum computer from crashing. All computers make errors when they operate, but quantum computers are more susceptible to failure. This is because the quantum states on which calculations depend are very delicate: complex phenomena, such as the spin states of atomic nuclei, can store quantum information but this data can easily be lost if the particles interact with their surroundings. A computer can never be perfectly isolated from its environment, so there will always be ‘noise’ in the system and, inevitably, errors will arise. Moreover, correcting such errors is almost as difficult as doing the calculation in the first place. So will it ever be possible to do a reliable quantum calculation?
“That was the problem I posed to Dorit,” says Ben-Or, who became Aharonov’s dissertation supervisor and later her collaborator. Working with Ben-Or, Aharonov proved that at a constant but low level of system noise, a quantum computer can still produce accurate results1.
“I consider her to be one of the most outstanding young people in this field,” says Peter Zoller, a theoretical physicist at the University of Innsbruck, Austria. Zoller wants to build a quantum computer, and he says that Aharonov has been instrumental in laying the theoretical foundations on which a real machine could be constructed. As well as her work on error tolerance, he cites an important proof2 Aharonov developed with Oded Regev and others while working at the University of California, Berkeley. The proof showed that two existing models for quantum computing are actually equivalent and, as a result, made writing quantum algorithms easier.
While at Berkeley, Aharonov extended her work on computers to address a fundamental puzzle presented by quantum mechanics — why its laws are evident in the world of elementary particles, but not in everyday life. At what point does the world switch from looking quantum to looking classical? Is it simply a matter of scale?
Aharonov showed that for many noisy quantum systems, there is a level of noise above which a transition to classical behaviour is inevitable. Such transitions are much sharper than expected from other theories that predict a gradual shift away from quantum behaviour3.
Ben-Or says that what sets Aharonov apart is her boldness. As a graduate student she was not shy about contacting leading figures in the field to discuss their work, he recalls. Zeph Landau, a mathematician at the City College of New York who collaborated with Aharonov on the model equivalence paper, says that she is focused but not single-minded, finding time to discuss other pursuits.
Aharonov says that balancing life and work is essential to her research. Like many theorists, she says that she has her best ideas when not thinking about work at all. Her daily yoga session is particularly rewarding, she says: “It disperses the fog. My intuition becomes sharper. When there is less struggle, ideas become clear.”
Eastern ideas about the interconnectedness of everything also influence her work. For instance, Aharonov is not fixated on the actual construction of a quantum computer. “The most interesting thing that might come out of an attempt to build one is the discovery that we can’t do it,” she says. By failing, she adds, we might discover some entirely new physics.
HAIM WATZMAN
Haim Watzman is a freelancer based in Jerusalem, Israel.
References
1. Aharonov, D. & Ben-Or, M. Preprint at http://xxx.lanl.gov/quant-ph/9611025 (1996).
2. Aharonov, D. et al. Preprint at http://xxx.lanl.gov/quant-ph/0405098, (2004).
3. Aharonov, D. Phys. Rev. A 62, 062311 (2000).

I first heard Dorit speak at the QIP conference in Chicago in 1999. What I remember most about the talk was that all of the sudden the little I knew about quantum error correcting codes crystalized perfectly for me during her talk.

Book Reviews

I have discovered that I would make a fine film critic, but that there is a difference between a fine film critic and a good scientific book reviewer. I am reminded that my grandfather used to regularly send in letters to the editor of his local newspaper. Is being a bag of inflated opinions genetic? Well, time to throw away my first attempt at a book review, and remind myself that scientists abhor opinions.

Well, Hello There Feller

Again, I’m working hard on my talk for QIP, this time listening to Mozart’s 9th, when I notice that something is definitely different outside my office window once again:
Deer!
The difference is that there is less brush in this picture.

Day Six

The last two days have been rather stormfilled. So, I couldn’t resist this morning and headed up the Santa Fe Ski Basin for a half day of skiing. Around two feet of snow had fallen over the past two days with around 10 inches last night. My first run I had the usual reaction to lots of powder and was pretty temid, but by the next run I was going crazy. Skiing in the glades was particularly ripe with a lot of the snow not even tracked out when I left around noon. I’ve also already found a couple really nice secret stashes. Oh, and I also hit a tree. Or well I got slapped in the face by some large braches and now it looks like I’ve been in a fight. Damn tree sucker punched me.

Let It Snow

I was working so hard on writing my talk for QIP, that I didn’t even notice that right in front of my face, outside my office window, it had started snowing:
Let It Snow

Asher Peres, 1934-2005

Sad news comes from via Lance Fortnow’s Computational Complexity:

Asher Peres, 1934-2005
By Netanel Lindner, Petra Scudo and Danny Terno via Christopher Fuchs
Quantum information science lost one of its founding fathers. Asher Peres died on Sunday, January 1, 2005. He was 70 years old.
A distinguished professor at the Department of Physics, Technion – Israel Institute of Technology, Asher described himself as “the cat who walks by himself”. His well-known independence in thought and research is the best demonstration of this attitude. Asher will be missed by all of us not only as a great scientist but especially as a wonderful person. He was a surprisingly warm and unpretentious man of stubborn integrity, with old-world grace and a pungent sense of humor. He was a loving husband to his wife Aviva, a father to his two daughters Lydia and Naomi, and a proud grandfather of six. Asher was a demanding but inspiring teacher. Many physicists considered him not only a valued colleague but also a dear friend and a mentor.
Asher’s scientific work is too vast to review, while its highlights are well-known. One of the six fathers of quantum teleportation, he made fundamental contributions to the definition and characterization of quantum entanglement, helping to promote it from the realm of philosophy to the world of physics. The importance of his contributions to other research areas cannot be overestimated. Starting his career as a graduate student of Nathan Rosen, he established the physicality of gravitational waves and provided a textbook example of a strong gravitational wave with his PP-wave. Asher was also able to point out some of the signatures of quantum chaos, paving the way to many more developments. All of these contributions are marked by a surprising simplicity and unbeatable originality.
Of all his publications, Asher was most proud of his book Quantum Theory: Concepts and Methods. The book is an example of Asher’s scientific style: an uncompromising and deep understanding of the fundamental issues expressed in a form which is as simple and accessible as possible. It took Asher six years to carefully weave the threads of his book together. The great quality of the work is acknowledged by anyone acquainted with the final result.
In a favorite anecdote, Asher told about a reporter who had interviewed him on quantum teleportation. “Can you teleport only the body, or also the spirit?” the reporter had asked. “Only the spirit,” was Asher’s reply. Our community has been privileged to know him and have been touched by his spirit.
I am the cat who walks by himself is a charming twelve-page autobiography covering his life from his birth in the village Beaulieu-sur-Dordogne in France until his meeting with Aviva on a train to Haifa. The rest of his story is in his formal CV.

Asher’s book, besides being a classic on foundational issues, profoundly influence much of the style of today’s quantum information science. One passage in particular was a favorite of mine which I accidentally quoted to Murray Gell-Mann the other day:

This mental prcoess can be repeated indefinitely. Some authors state that the last stage in this chain of measurements involves “consciousness,” or the “intellectual inner life” of the observer, by virtue of the “principle of psychophysical parallelism.”[3,4] Other authors introduce a wave function for the whole Universe[5]. In this book, I shall refrain from using concepts that I do not understand.
[3] J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Springer, Berlin (1932) p. 223; transl. by E.T. Beyer: Mathematical Foundations of Quantum Mechanics, Princeton Univ. Press (1955) p. 418
[4] E.P. Wigner, Symmetries and Reflections, Indiana Univ. Press, Bloomington (1967)

Among all the papers which Asher wrote, I think my favorite would have to be a paper he wrote with Wootters: “Optimal Detection of Quantum Information,” Phys. Rev. Lett. 66, 1119-1122 (1991):

Two quantum systems are identically prepared in different locations. An observer’s task is to determine their state. A simple example shows that a pair of measurements of the von Neumann type is less effective than a sequence of nonorthogonal probability-operator measures, alternating between the two quantum systems. However, the most efficient set of operations of that type that we were able to design falls short of a single combined measurement, performed on both system together.

Juveniles on Death Row

Since 1980, 22 juveniles have been executed in the U.S. By state, Texas 13, Oklahoma 2, Virginia 3, Missouri 1, Louisiana 1, Georgia 1, South Carolina 1. 72 remain on death row: Texas 29, Alabama 14, Mississippi 5, North Carolina 4, Arizona 4, Louisiana 4, Florida 3, South Carolina 3, Georgia 2, Pennsylvania 2, Virginia 1, Nevada 1. (From today’s New York Times.) One blue state (PA). Inflamatory mode on: I guess it would be unfair to all of the other red states to throw them in with this bunch, but in my more hateful hours I really want to call red state voters kid killers.

Anderson on Strings

Philip Anderson (“More is different!”) in the New York times today on “What do you believe is true even though you cannot prove it?”

Is string theory a futile exercise as physics, as I believe it to be? It is an interesting mathematical specialty and has produced and will produce mathematics useful in other contexts, but it seems no more vital as mathematics than other areas of very abstract or specialized math, and doesn’t on that basis justify the incredible amount of effort expended on it.
My belief is based on the fact that string theory is the first science in hundres of years to be pursued in pre-Baconian fashion, without any adequate experimental guidance. It proposes that Nature is the way we would like it to be rather than the way we see it to be: and it is improbable that Nature thinks the same way we do.
The sad thing is that, as several young would-be theorists have explained to me, it is so highly developed that it is a full-time job just to keep up with it. That means that other avenues are not being explored by the bright, imaginative young people, and that alternative career paths are blocked.

Day 5

Yesterday I skied at Santa Fe Ski Basin. Unfortunately I didn’t get a chance to ski while I was in the Pacific northwest: they didn’t have any snow and I didn’t have nearly enough time. The Ski Basin has quite a lot of snow now, over half of their upper mountain is open. It started snowing a few minutes after I showed up and snowed lightly all day, putting about two inches of snow on the ground while I was there (and making the drive home interesting: the truck in front of me slid off the road, and I saw one big long truck that had clearly done a bunch of circles before ending up in a ditch.) The highlight of the trip was when I got to start fullfilling a New Years resolution: “Learn to talk about my work and physics in terms which are understandable and exciting to the layperson and don’t make me sound like an elitist.” The subject of my first such rant was a yoga instructor who wanted me to explain to him quantum gravity. I gave him this nice beautiful spiel, and just as we were about to get off the lift, he told me about how he was trying to use the concept of a graviton in his yoga: he figured that if you set your body up in the right position you could send out gravitons which were well balanced with the gravitational field of the earth.