Since, my remarks in the last post about classical computational complexity got me into such hot water with those who are much smarter than I am, I thought I’d post another of the less often expressed reasons for studying quantum computation from my notes:
It is often remarked upon by mathematicians and physicists that there is a mysterious harmony between these two disciplines. Indeed both fields have benefitted immensely from each other. The same can not be said, I think, for computer science. A good question to ask is why this is true? One idea floating around in research land is that the reason for the lack of such deep connections has been that this is because the wrong model of computation has been studied. It makes sense that if the universe obeys the laws of quantum theory, then we shouldn’t be surprised if a theory of computation based on classical theory doesn’t make connection to the physics of these devices. And going one further step it also seems likely that if we use the theory of computation which is more relevant to the way our world works, then we just might be able to prove and reason about these computers in a simpler manner. A rough analog might be that between real analysis and complex analysis: certainly those of you who have had a class on real analysis and complex analysis remember how “easier” everything is in complex analysis than in real analysis. Might quantum computers lead to a similar shift? Right now there are only a few results that I can point to along these directions, for example Scott Aaronson’s has a very eloquent proof that the complexity class PP is closed under intersection which begins by first showing that PP is equal to a model of quantum computing in which one can post-selection the outcome of the quantum computation and then is extremely simple due to the properties of the quantum model of computation to show closure under intersction. Might not more of the theory of computational complexity be as easy if we focus on the model of quantum computation?