QIP 2014 accepted talks

This Thanksgiving, even if we can’t all be fortunate enough to be presenting a talk at QIP, we can be thankful for being part of a vibrant research community with so many different lines of work going on. The QIP 2014 accepted talks are now posted with 36 out of 222 accepted. While many of the hot topics of yesteryear (hidden subgroup problem, capacity of the depolarizing channel) have fallen by the wayside, there is still good work happening in the old core topics (algorithms, information theory, complexity, coding, Bell inequalities) and in topics that have moved into the mainstream (untrusted devices, topological order, Hamiltonian complexity).

Here is a list of talks, loosely categorized by topic (inspired by Thomas’s list from last year). I’m pretty sad about missing my first QIP since I joined the field, because its unusually late timing overlaps the first week of the semester at MIT. But in advance of the talks, I’ll write a few words (in italics) about what I would be excited about hearing if I were there.

Quantum Shannon Theory

There are a lot of new entropies! Some of these may be useful – at first for tackling strong converses, but eventually maybe for other applications as well. Others may, well, just contribute to the entropy of the universe. The bounds on entanglement rate of Hamiltonians are exciting, and looking at them, I wonder why it took so long for us to find them.

1a. A new quantum generalization of the Rényi divergence with applications to the strong converse in quantum channel coding
Frédéric Dupuis, Serge Fehr, Martin Müller-Lennert, Oleg Szehr, Marco Tomamichel, Mark Wilde, Andreas Winter and Dong Yang. 1306.3142 1306.1586
merged with
1b. Quantum hypothesis testing and the operational interpretation of the quantum Renyi divergences
Milan Mosonyi and Tomohiro Ogawa. 1309.3228

25. Zero-error source-channel coding with entanglement
Jop Briet, Harry Buhrman, Monique Laurent, Teresa Piovesan and Giannicola Scarpa. 1308.4283

28. Bound entangled states with secret key and their classical counterpart
Maris Ozols, Graeme Smith and John A. Smolin. 1305.0848
It’s funny how bound key is a topic for quant-ph, even though it is something that is in principle purely a classical question. I think this probably is because of Charlie’s influence. (Note that this particular paper is mostly quantum.)

3a. Entanglement rates and area laws
Michaël Mariën, Karel Van Acoleyen and Frank Verstraete. 1304.5931 (This one could also be put in the condensed-matter category.)
merged with
3b. Quantum skew divergence
Koenraad Audenaert. 1304.5935

22. Quantum subdivision capacities and continuous-time quantum coding
Alexander Müller-Hermes, David Reeb and Michael Wolf. 1310.2856

Quantum Algorithms

This first paper is something I tried (unsuccessfully, needless to say) to disprove for a long time. I still think that this paper contains yet-undigested clues about the difficulties of non-FT simulations.

2a. Exponential improvement in precision for Hamiltonian-evolution simulation
Dominic Berry, Richard Cleve and Rolando Somma. 1308.5424
merged with
2b. Quantum simulation of sparse Hamiltonians and continuous queries with optimal error dependence
Andrew Childs and Robin Kothari.
update: The papers appear now to be merged. The joint (five-author) paper is 1312.1414.

35. Nested quantum walk
Andrew Childs, Stacey Jeffery, Robin Kothari and Frederic Magniez.
(not sure about arxiv # – maybe this is a generalization of 1302.7316?)

Quantum games: from Bell inequalities to Tsirelson inequalities

It is interesting how the first generation of quantum information results is about showing the power of entanglement, and now we are all trying to limit the power of entanglement. These papers are, in a sense, about toy problems. But I think the math of Tsirelson-type inequalities is going to be important in the future. For example, the monogamy bounds that I’ve recently become obsessed with can be seen as upper bounds on the entangled value of symmetrized games.

4a. Binary constraint system games and locally commutative reductions
Zhengfeng Ji. 1310.3794
merged with
4b. Characterization of binary constraint system games
Richard Cleve and Rajat Mittal. 1209.2729

20. A parallel repetition theorem for entangled projection games
Irit Dinur, David Steurer and Thomas Vidick. 1310.4113

33. Parallel repetition of entangled games with exponential decay via the superposed information cost
André Chailloux and Giannicola Scarpa. 1310.7787

Untrusted randomness generation

Somehow self-testing has exploded! There is a lot of information theory here, but the convex geometry of conditional probability distributions also is relevant, and it will be interesting to see more connections here in the future.

5a. Self-testing quantum dice certified by an uncertainty principle
Carl Miller and Yaoyun Shi.
merged with
5b. Robust device-independent randomness amplification from any min-entropy source
Kai-Min Chung, Yaoyun Shi and Xiaodi Wu.

19. Infinite randomness expansion and amplification with a constant number of devices
Matthew Coudron and Henry Yuen. 1310.6755

29. Robust device-independent randomness amplification with few devices
Fernando Brandao, Ravishankar Ramanathan, Andrzej Grudka, Karol Horodecki, Michal Horodecki and Pawel Horodecki. 1310.4544

The fuzzy area between quantum complexity theory, quantum algorithms and classical simulation of quantum systems. (But not Hamiltonian complexity.)

I had a bit of trouble categorizing these, and also in deciding how surprising I should find each of the results. I am also somewhat embarrassed about still not really knowing exactly what a quantum double is.

6. Quantum interactive proofs and the complexity of entanglement detection
Kevin Milner, Gus Gutoski, Patrick Hayden and Mark Wilde. 1308.5788

7. Quantum Fourier transforms and the complexity of link invariants for quantum doubles of finite groups
Hari Krovi and Alexander Russell. 1210.1550

16. Purifications of multipartite states: limitations and constructive methods
Gemma De Las Cuevas, Norbert Schuch, David Pérez-García and J. Ignacio Cirac.

Hamiltonian complexity started as a branch of quantum complexity theory but by now has mostly devoured its host

A lot of exciting results. The poly-time algorithm for 1D Hamiltonians appears not quite ready for practice yet, but I think it is close. The Cubitt-Montanaro classification theorem brings new focus to transverse-field Ising, and to the weird world of stoquastic Hamiltonians (along which lines I think the strengths of stoquastic adiabatic evolution deserve more attention). The other papers each do more or less what we expect, but introduce a lot of technical tools that will likely see more use in the coming years.

13. A polynomial-time algorithm for the ground state of 1D gapped local Hamiltonians
Zeph Landau, Umesh Vazirani and Thomas Vidick. 1307.5143

15. Classification of the complexity of local Hamiltonian problems
Toby Cubitt and Ashley Montanaro. 1311.3161

30. Undecidability of the spectral gap
Toby Cubitt, David Pérez-García and Michael Wolf.

23. The Bose-Hubbard model is QMA-complete
Andrew M. Childs, David Gosset and Zak Webb. 1311.3297

24. Quantum 3-SAT is QMA1-complete
David Gosset and Daniel Nagaj. 1302.0290

26. Quantum locally testable codes
Dorit Aharonov and Lior Eldar. (also QECC) 1310.5664

Codes with spatially local generators aka topological order aka quantum Kitaev theory

If a theorist is going to make some awesome contribution to building a quantum computer, it will probably be via this category. Yoshida’s paper is very exciting, although I think the big breakthroughs here were in Haah’s still underappreciated masterpiece. Kim’s work gives operational meaning to the topological entanglement entropy, a quantity I had always viewed with perhaps undeserved skepticism. It too was partially anticipated by an earlier paper, by Osborne.

8. Classical and quantum fractal code
Beni Yoshida. I think this title is a QIP-friendly rebranding of 1302.6248

21. Long-range entanglement is necessary for a topological storage of information
Isaac Kim. 1304.3925

Bit commitment is still impossible (sorry Horace Yuen) but information-theoretic two-party crypto is alive and well

The math in this area is getting nicer, and the protocols more realistic. The most unrealistic thing about two-party crypto is probably the idea that it would ever be used, when people either don’t care about security or don’t even trust NIST not to be a tool of the NSA.

10. Entanglement sampling and applications
Frédéric Dupuis, Omar Fawzi and Stephanie Wehner. 1305.1316

36. Single-shot security for one-time memories in the isolated qubits model
Yi-Kai Liu. 1304.5007

Communication complexity

It is interesting how quantum and classical techniques are not so far apart for many of these problems, in part because classical TCS is approaching so many problem using norms, SDPs, Banach spaces, random matrices, etc.

12. Efficient quantum protocols for XOR functions
Shengyu Zhang. 1307.6738

9. Noisy Interactive quantum communication
Gilles Brassard, Ashwin Nayak, Alain Tapp, Dave Touchette and Falk Unger. 1309.2643 (also info th / coding)

Foundations

I hate to be a Philistine, but I wonder what disaster would befall us if there WERE a psi-epistemic model that worked. Apart from being able to prove false statements. Maybe a commenter can help?

14. No psi-epistemic model can explain the indistinguishability of quantum states
Eric Cavalcanti, Jonathan Barrett, Raymond Lal and Owen Maroney. 1310.8302

??? but it’s from THE RAT

update: A source on the PC says that this is an intriguing mixture of foundations and Bell inequalities, again in the “Tsirelson regime” of exploring the boundary between quantum and non-signaling.
17. Almost quantum
Miguel Navascues, Yelena Guryanova, Matty Hoban and Antonio Acín.

FTQC/QECC/papers Kalai should read :)

I love the part where Daniel promises not to cheat. Even though I am not actively researching in this area, I think the race between surface codes and concatenated codes is pretty exciting.

18. What is the overhead required for fault-tolerant quantum computation?
Daniel Gottesman. 1310.2984

27. Universal fault-tolerant quantum computation with only transversal gates and error correction
Adam Paetznick and Ben Reichardt. 1304.3709

Once we equilibrate, we will still spend a fraction of our time discussing thermodynamics and quantum Markov chains

I love just how diverse and deep this category is. There are many specific questions that would be great to know about, and the fact that big general questions are still being solved is a sign of how far we still have to go. I enjoyed seeing the Brown-Fawzi paper solve problems that stumped me in my earlier work on the subject, and I was also impressed by the Cubitt et al paper being able to make a new and basic statement about classical Markov chains. The other two made me happy through their “the more entropies the better” approach to the world.

31. An improved Landauer Principle with finite-size corrections and applications to statistical physics
David Reeb and Michael M. Wolf. 1306.4352

32. The second laws of quantum thermodynamics
Fernando Brandao, Michal Horodecki, Jonathan Oppenheim, Nelly Ng and Stephanie Wehner. 1305.5278

34. Decoupling with random quantum circuits
Winton Brown and Omar Fawzi. 1307.0632

11. Stability of local quantum dissipative systems
Toby Cubitt, Angelo Lucia, Spyridon Michalakis and David Pérez-García. 1303.4744

Posted in Conferences, Quantum | 10 Comments

Portrait of an Academic at a Midlife Crisis

Citations are the currency of academia. But the currency of your heart is another thing altogether. With apologies to my co-authors, here is a plot of my paper citations versus my own subjective rating of the paper. Hover over the circles to see the paper title, citations per year, and score. Click to see the actual paper. (I’ve only included papers that appear on the arxiv.)

If I were an economist I suppose at this point I would fit a sloping line through the data and claim victory. But being a lowly software developer, its more interesting to me to give a more anecdotal treatment of the data.

  • The paper that I love the most has, as of today, exactly zero citations! Why do I love that paper? Not because it’s practical (far from it.) Not because it proves things to an absolute T (just ask the beloved referees of that paper.) But I love it because it says there is the possibility that there exists a material that quantum computes in a most peculiar manner. In particular the paper argues that it is possible to have devices where: quantum information starts on one side of device, you turn on a field over the device, and “bam!” the quantum information is now on the other side of the material with a quantum circuit applied to it. How f’in cool is that! I think its just wonderful, and had I stuck around the hallowed halls, I probably would still be yelling about how cool it is, much to the dismay of my friends and colleagues (especially those for which the use of the word adiabatic causes their brain to go spazo!)
  • Three papers I was lucky enough to be involved in as a graduate student, wherein we showed how exchange interactions alone could quantum compute, have generated lots of citations. But the citations correlate poorly with my score. Why? Because it’s my score! Haha! In particular the paper I love the most out of this series is not the best written, most deep, practical, or highly cited. It’s the paper where we first showed that exchange alone was universal for quantum computing. The construction in the paper has large warts on it, but it was the paper where I think I first participated in a process where I felt like we knew something about the possibilities of building a quantum computer that others had not quite exactly thought of. And that feeling is wonderful and is why that paper has such a high subjective score.
  • It’s hard not to look this decades worth of theory papers and be dismayed about how far they are from real implementation. I think that is why I like Coherence-preserving quantum bit and Adiabatic Quantum Teleportation. Both of these are super simple and always felt like if I could just get an experimentalist drunk enough excited enough they might try implement that damn thing. The first shows a way to make a qubit that should be more robust to errors because its ground state is in an error detecting state. The second shows a way to get quantum information to move between three qubits using a simple adiabatic procedure related to quantum teleportation. I still hope someday to see these executed on a functioning quantum computer, and I wonder how I’d feel about them should that happen.
Posted in Go Ahead, Waste Your Time, Quantum Computing, Self: Meet Center. Center: Meet Self. | 1 Comment

happy deadline everyone!

The main proof in one of my QIP submissions has developed a giant hole.

Hopefully the US Congress does a better job with its own, somewhat higher stakes, deadline. In many ways their job is easier. They can just submit the same thing as last year and they don’t need to compress their result into three pages. Unfortunately, things are not looking good for them either!

Good luck to all of us.

Posted in Conferences, Politics | 4 Comments

When I Was Young, I Thought It Would Be Different….

When I was in graduate school (back before the earth cooled) I remember thinking the following thoughts:

  1. Quantum computing is a new field filled with two types of people: young people dumb enough to not know they weren’t supposed to be studying quantum computing, and old, tenured people who understood that tenure meant that they could work on what interested them, even when their colleagues thought they were crazy.
  2. Younger people are less likely to have overt biases against woman.  By this kind of bias I mean that like the math professor at Caltech who told one of my friends that woman were bad at spatial reasoning (a.k.a. Jerks).  Maybe these youngsters even had less hidden bias?
  3. Maybe, then, because the field was new, quantum computing would be a discipline in which the proportion of woman was higher than the typical rates of their parent disciplines, physics and in computer science?

In retrospect, like most of the things I have thought in my life, this line of reasoning was naive.

Reading Why Are There So Few Women In Science in the New York Times reminded me about these thoughts of my halcyon youth, and made me dig through the last few QIP conferences to get one snapshot (note that I just say one, internet comment troll) of the state of woman in the quantum computing (theory) world:

Year Speakers Woman Speakers Percent
2013 41 1 2.4
2012 43 2 4.7
2011 40 3 7.5
2010 39 4 10.2
2009 40 1 2.5

Personally, it’s hard to read these numbers and not feel a little disheartened.

Posted in Quantum Computing, The Loony Bin Called Academia | 9 Comments

Important upcoming deadlines

As part of our ongoing service to the quantum information community, we here at the Quantum Pontiff would be remiss if we didn’t remind you of important upcoming deadlines. We all know that there is a certain event coming in February of 2014, and that we had better prepare for it; the submission deadline is fast approaching.

Therefore, let me take the opportunity to remind you that the deadline to submit to the special issue of the journal Symmetry called “Physics based on two-by-two matrices” is 28 February 2014.

Articles based on two-by-two matrices are invited. … It is generally assumed that the mathematics of this two-by-two matrix is well known. Get the eigenvalues by solving a quadratic equation, and then diagonalize the matrix by a rotation. This is not always possible. First of all, there are two-by-two matrixes that cannot be diagonalized. For some instances, the rotation alone is not enough for us to diagonalize the matrix. It is thus possible to gain a new insight to physics while dealing with these mathematical problems.

I, for one, am really looking forward to this special issue. And lucky for us, it will be open access, with an article processing charge of only 500 Swiss Francs. That’s just 125 CHF per entry of the matrix! Maybe we’ll gain deep new insights about such old classics as \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, or tackle the troublesome and non-normal beast, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}. Who knows? Please put any rumors you have about great new 2×2 matrix results in the comments.

Posted in Physics Bastardizations | 7 Comments

Why I Left Academia

TLDR: scroll here for the pretty interactive picture.

Over two years ago I abandoned my post at the University of Washington as a assistant research professor studying quantum computing and started a new career as a software developer for Google. Back when I was a denizen of the ivory tower I used to daydream that when I left academia I would write a long “Jerry Maguire”-esque piece about the sordid state of the academic world, of my lot in that world, and how unfair and f**ked up it all is. But maybe with less Tom Cruise. You know the text, the standard rebellious view of all young rebels stuck in the machine (without any mirror.) The song “Mad World” has a lyric that I always thought summed up what I thought it would feel like to leave and write such a blog post: “The dreams in which I’m dying are the best I’ve ever had.”

But I never wrote that post. Partially this was because every time I thought about it, the content of that post seemed so run-of-the-mill boring that I feared my friends who read it would never ever come visit me again after they read it. The story of why I left really is not that exciting. Partially because writing a post about why “you left” is about as “you”-centric as you can get, and yes I realize I have a problem with ego-centric ramblings. Partially because I have been busy learning a new career and writing a lot (omg a lot) of code. Partially also because the notion of “why” is one I—as a card carrying ex-Physicist—cherish and I knew that I could not possibly do justice to giving a decent “why” explanation.

Indeed: what would a “why” explanation for a life decision such as the one I faced look like? For many years when I would think about this I would simply think “well it’s complicated and how can I ever?” There are, of course, the many different components that you think about when considering such decisions. But then what do you do with them? Does it make sense to think about them as probabilities? “I chose to go to Caltech, 50 percent because I liked physics, and 50 percent because it produced a lot Nobel prize winners.” That does not seem very satisfying.

Maybe the way to do it is to phrase the decisions in terms of probabilities that I was assigning before making the decision. “The probability that I’ll be able to contribute something to physics will be 20 percent if I go to Caltech versus 10 percent if I go to MIT.” But despite what some economists would like to believe there ain’t no way I ever made most decisions via explicit calculation of my subjective odds. Thinking about decisions in terms of what an actor feels each decision would do to increase his/her chances of success feels better than just blindly associating probabilities to components in a decision, but it also seems like a lie, attributing math where something else is at play.

So what would a good description of the model be? After pondering this for a while I realized I was an idiot (for about the eighth time that day. It was a good day.) The best way to describe how my brain was working is, of course, nothing short than my brain itself. So here, for your amusement, is my brain (sorry, only tested using Chrome). Yes, it is interactive.

Posted in Extralusionary Intelligence, Go Ahead, Waste Your Time, Off The Deep End, Programming, Self: Meet Center. Center: Meet Self., The Loony Bin Called Academia | 12 Comments

Cosmology meets Philanthropy — guest post by Jess Riedel

My colleague Jess Riedel recently attended a conference  exploring the connection between these seemingly disparate subjects, which led him to compose the following essay.–CHB
Impact_event

People sometimes ask me what how my research will help society.  This question is familiar to physicists, especially those of us whose research is connected to every-day life only… shall we say…tenuously.  And of course, this is a fair question from the layman; tax dollars support most of our work.

I generally take the attitude of former Fermilab director Robert R. Wilson.  During his testimony before the Joint Committee on Atomic Energy in the US Congress, he was asked how discoveries from the proposed accelerator would contribute to national security during a time of intense Cold War competition with the USSR.  He famously replied “this new knowledge has all to do with honor and country but it has nothing to do directly with defending our country except to help make it worth defending.”

Still, it turns out there are philosophers of practical ethics who think a few of the academic questions physicists study could have tremendous moral implications, and in fact might drive key decisions we all make each day. Oxford philosopher Nick Bostrom has in particular written about the idea of “astronomical waste“.  As is well known to physicists, the universe has a finite, ever-dwindling supply of negentropy, i.e. the difference between our current low-entropy state and the bleak maximal entropy state that lies in our far future.  And just about everything we might value is ultimately powered by it.  As we speak (or blog), the stupendously vast majority of negentropy usage is directed toward rather uninspiring ends, like illuminating distant planets no one will ever see.

These resources can probably be put to better use.  Bostrom points out that, assuming we don’t destroy ourselves, our descendants likely will one day spread through the universe.  Delaying our colonization of the Virgo Supercluster by one second forgoes about 10^{16} human life-years. Each year, on average, an entire galaxywith its billions of starsis slipping outside of our cosmological event horizon, forever separating it from Earth-originating life.  Maybe we should get on with it?

But the careful reader will note that not everyone believes the supply of negentropy is well understood or even necessarily fixed, especially given the open questions in general relativity, cosmology, quantum mechanics, and (recently) black holes.  Changes in our understanding of these and other issues could have deep implications for the future.  And, as we shall see, for what we do tomorrow.

On the other side of the pond, two young investment analysts at Bridgewater Associates got interested in giving some of their new disposable income to charity. Naturally, they wanted to get something for their investment, and so they went looking for information about what charity would get them the most bang for their buck.   But it turned out that not too many people in the philanthropic world seemed to have many good answer.  A casual observer would even be forgiven for thinking that nobody really cared about what was actually getting done with the quarter trillion donated annually to charity.  And this is no small matter; as measured by just about any metric you choose—lives saved, seals unclubbed, children dewormed—charities vary by many orders of magnitude in efficiency.

This prompted them to start GiveWell, now considered by many esteemed commentators to be the premier charity evaluator.  One such commentator is Princeton philosopher Peter Singer, who proposed the famous thought experiment of the drowning child.  Singer is also actively involved with a larger movement that these days goes by the name “Effective Altruism”.  It’s founding question: If one wants to accomplish the most good in the world, what, precisely, should one be doing?  

You won’t be surprised that there is a fair amount of disagreement on the answer.  But what might surprise you is how disagreement about the fundamental normative questions involved (regardless of the empirical uncertainties) leads to dramatically different recommendations for action.    

A first key topic is animals.  Should our concern about human suffering be traded off against animal suffering? Perhaps weighted by neural mass?  Are we responsible for just the animals we farm, or the untold number suffering in the wild?  Given Nature’s fearsome indifference, is the average animal life even worth living?  Counterintuitive results abound, like the argument that we should eat more meat because animal farming actually displaces much more wild animal suffering than it creates.

Putting animals aside, we will still need to balance “suffering averted”  with “flourishing created”.  How many malaria deaths will we allow to preserve a Rembrandt?  Very, very bad futures controlled by totalitarian regimes are conceivable; should we play it safe and blow up the sun?

But the accounting for future people leads to some of the most arresting ideas.  Should we care about people any less just because they will live in the far future?  If their existence is contingent on our action, is it bad for them to not exist?  Here, we stumble on deep issues in population ethics.  Legendary Oxford philosopher Derek Parfit formulated the argument of the ”repugnant conclusion”.  It casts doubt on the idea that a billion rich, wealthy people living sustainably for millennia on Earth would be as ideal as you might initially think. 

(Incidentally, the aim of such arguments is not to convince you of some axiomatic position that you find implausible on its face, e.g. “We should maximize the number of people who are born”.  Rather, the idea is to show you that your own already-existing beliefs about the badness of letting people needlessly suffer will probably compel you to act differently, if only you reflect carefully on it.)

The most extreme end of this reasoning brings us back to Bostrom, who points out that we find ourselves at a pivotal time in history. Excepting the last century, humans have existed for a million years without the ability to cause our own extinction.  In probably a few hundred years—or undoubtedly in a few thousand—we will have the ability to create sustainable settlements on other worlds, greatly decreasing the chance that a calamity could wipe us out. In this cosmologically narrow time window we could conceivably extinguish our potentially intergalactic civilization through nuclear holocaust or other new technologies.  Even tiny, well-understood risks like asteroid and comet strikes (probability of extinction event: ~10^{-7} per century) become seriously compelling when the value of the future is brought to bear. Indeed, between 10^{35} and 10^{58} future human lives hang in the balance, so it’s worth thinking hard about.

So why are you on Facebook when you could be working on Wall Street and donating all your salary to avert disaster? Convincingly dodging this argument is harder than you might guess.  And there are quite a number of smart people who bite the bullet.

 

Posted in Astrobiology, Astronomy, Economics, Off The Deep End, Uncategorized | 2 Comments